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Technique
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~ 120 m 
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Technique

•  Night Sky Background (NSB)
–  Stars, air-glow, Zodiacal light...
–  Extra-galactic rate ~100 MHz  (100m2, 0.15o pix)
–  Bright regions x 3 brighter
–  Moon light x 5 brighter

background

–  Reduced online with a trigger.
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•  Gamma Rays result in Cherenkov light, but so do 
cosmic rays.
–  Rate dominates gamma-ray rate, even after NSB is reduced.
–  Must be isolated offline using image analysis. 

Technique
background

40
0m



Images seen by a 
telescope

from Jamie Holder

Hadronic Cosmic Ray Gamma Ray
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Key Technology

960 PMT pixels 
Angular pixel size: 0.16°     

Camera diameter:5° FoV (1.4 m)

the camera: an example from HESS 
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Key Technology
the camera: an example from HESS  

1000 images/s        
16 ns exposures
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How can we do better?
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Bigger "
Telescopes?
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More Telescopes?
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The Cherenkov Telescope Array

•  A factor 10 more sensitive than current instruments
➤  Plus - much wider energy coverage, substantially better angular 

and energy resolution & wider field of view

•  A ~ 200M€ International Project
➤  Builds on expertise from HESS, MAGIC and VERITAS
➤  >125 institutes in 27 countries
➤  Two sites, ~80 Cherenkov telescopes 
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The Telescopes
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LST 

MST 

SST 

•  ~4 
•  threshold ~30 GeV
•  ~2.2 m Camera
•  4.5o FoV
•  1700 Pixels

•  ~25  
•  200 GeV– 5 TeV 
•  ~2 m Camera
•  7-8o FoV
•  1500-2000 Pixels

•  ~35 
•  3 km2 area  
•  ~1 TeV - 300 TeV  
•  ~1.5 m Camera
•  7-10o FoV
•  600-1300 Pixels
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LST 

MST 

SST 

•  1.5” PMTs
•  Developed by Hamamatsu & MPI Munich for CTA 
•  Super Bialkali (Sba) photocathode 
•  ~20% of Cherenkov photons 300-600 nm

Baseline photosensors: R11920
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Majority of the cost is 
in the structure 
(carbon fibre)."

Majority of the cost is 
in the camera…"

Camera and structure 
cost approximately the 

same."
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4 m 

Majority of the cost is 
in the camera…"

Camera and structure 
cost approximately the 

same."

Majority of the cost is 
in the structure 
(carbon fibre)."
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The Telescopes
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LST 

MST 

Dual-Mirror SST 

•  ~4 
•  threshold ~30 GeV
•  ~2.2 m Camera
•  4.5o FoV
•  1700 Pixels

•  ~25  
•  200 GeV– 5 TeV 
•  ~2 m Camera
•  7-8o FoV
•  1500-2000 Pixels

•  70 
•  7 km2 area  
•  ~1 TeV - 300 TeV  
•  ~0.4 m Camera
•  9o FoV
•  2000 Pixels

4 m 
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SST: Dual Mirror Design

•  Secondary optics facilitates a reduced plate scale. 

•  The camera becomes 0.35 m - 0.5 m across

Secondary 

Primary 

Camera 
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The UK Contribution
•  Focus on High Energies:

–  Best angular/energy resolution
–  Biggest potential improvement
–  Good match to UK science interests
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HESS"

XMM"

CTA PSF"

Science Example: SNR


-  No directional information about PeV 
particle acceleration in our galaxy        
CTA SSTs will revolutionise this!!

-  With resolved sub-structure can test 
models for acceleration                            

eg Bell et al (Oxford/RAL).

-  Sensitivity to detect ALL young SNR in 
our galaxy.



The UK Contribution
•  Focus on High Energies:

–  Best angular/energy resolution
–  Biggest potential improvement
–  Good match to UK science interests

•  Groups:
–  Core: Leicester, Liverpool, Durham, Leeds, Oxford
–  Wide interest in CTA science
–  Broader consortium needed for the construction phase
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Hinton 
UK PI, 
MC Coordinator
 

White  
SST Camera 
Coordinator
 

Chadwick  
Outreach 
Coordinator
 

Knapp 
Consortium Board 
Chair
 

Greenshaw 
SST  
Coordinator
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The UK Contribution
•  Focus on High Energies:

–  Best angular/energy resolution
–  Biggest potential improvement
–  Good match to UK science interests

•  Groups:
–  Core: Leicester, Liverpool, Durham, Leeds, Oxford
–  Wide interest in CTA science
–  Broader consortium needed for the construction phase

•  STFC funding received:
–  Optimise the SST subsystem
–  Design and build a prototype camera for the Dual Mirror SST: 

Compact High Energy Camera (CHEC).

•  Long-term Goal:
–  Position the UK for early CTA science
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θMax = 60o

6 x 6 mm 

~ 40 cm
9o FoV

–  Not without challenges:
•  Curved focal plane
•  Incident light from large angles

CHEC
focal plane
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SiPM Tile: S11828-3344M
Tiles are buttable
Combine 16 => 52 mm 
(MAPMT)


MAPMT: H10966
64 pixels, 
Each 6 mm x 6 mm

CHEC
focal plane
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Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r"

MAPMT signals are 
fast 0.4 ns rise time,  

1 ns FWHM

37 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r" Simulations show 

that for >TeV 
energies ~ 6 ns 

FWHM is optimal 
for triggering

38 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r" Trigger:
4 neighbouring pixels 

are summed, then 
discriminated.

0.4o super pixel 

6 mm  
(0.2o) 

MAPMT 
pixel 

Full 
waveforms 
for ~100 ns 

digitised

39 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r"

Digitised signals are 
serialised and 
buffered until a 

camera trigger ocurs. 
The data are then 

readout to the camera 
CPU.

40 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r" Camera Trigger:

The 16 x 32 digital 
trigger signals are 

input into a backplane 
FPGA. Baseline 

trigger: overlapping, 
next-neighbour super-

pixels

41 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



CHEC
electronics & readout

Target Asic" FPGA"

Ba
ck

pl
an

e"

64x fast, 
analogue 

signals!

Target Asic"
Target Asic"Sampling 

ASIC"

16 x 
Preamps"16 x 

Preamps"16 x 
Preamps"16 x Preamp"

64x shaped, 
amplified, 
analogue 

signals!

Serial signal data!

16x digital trigger signals!

CPU / 
Switch"

Camera trigger on 
the backplane!

64x digitised signals!

x 32!

Ph
ot

os
en

so
r"

Ba
ck

pl
an

e"

Ph
ot

os
en

so
r"

Events are 
buffered in the 

CPU and 
readout if an 

“array trigger” 
occurs.

42 

Gbit Ethernet: !
Control, Data, 

Camera Trigger, 
Clock!



C
am

er
a 

Ba
ck

pl
an

e"

CHEC
electronics & readout

Ba
ck

pl
an

e"
C

en
tra

l L
oc

at
io

n"

µs Clock!

Camera Trigger List !

Array Trigger List!

Data!

ns Clock!

Camera Triggers!

Data!

C
am

er
a 

Ba
ck

pl
an

e"

Camera N!

Camera 1!

Data sent over ethernet, 10-60 MByte/s per camera 
after array trigger (100-600 Mbyte/s before).!

43 

µs Clock!

Camera Trigger List !

Array Trigger List!

Data!

ns Clock!

Camera Triggers!

Data!



CHEC

•  Dual Mirror SST design allows a small camera, but requires 
compact electronics.

•  Modules based on the TARGET ASIC developed at SLAC.
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TARGET modules

~35 mm

~240 mm

~
35

 m
m


•  64 ch
•  0.2 - 1.2 GSPS
•  300 MHz analogue bandwidth
•  1% crosstalk
•  ~10 µs deadtime (48 samples)
•  12 bits 
•  ~0.6 mV RMS noise

•  4.5 W /module
•  0.2 kg / module
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CHEC
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TARGET modules
TARGET ASIC

HV (1200 V)

FPGA
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CHEC

46 

mechanics

32 TARGET modules 

Backplane with 
single Virtex 7 

FPGA

1 x MAPMT (H10966A)
or

16 x SiPM Tile (S11828-3344M)

Preliminary Design Only
Focal Plane

Electronics
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Technology Synergy

•  Data rates

•  Clock synchronisation

•  FPGAs & ASICs

•  Telescope structure sizes

•  Reliability - expected to operate 20-30 years.

•  Cost:
–  50 € per pixel for the Dual Mirror SST camera
–  100 M€ camera instrumentation cost 
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Conclusions
•  CTA is the future of gamma-ray astronomy, from energies 

overlapping with Fermi to 300 TeV.

•  Nanosecond cameras and array signal distribution are key 
technology.
–  Photosensors and ASICs have been developed for CTA and may be 

useful elsewhere.

•  The potential of CTA >1 TeV maximised with a dual mirror 
SST design. 
–  Offers the opportunity to use the next generation of photosensors 

and compact electronics. 
–  The UK is funded to design, build and test a dual mirror SST 

camera. 
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Where to read more?


